17.1.1.9. pysisyphus.io package
17.1.1.9.1. Submodules
17.1.1.9.2. pysisyphus.io.cjson module
17.1.1.9.3. pysisyphus.io.crd module
17.1.1.9.4. pysisyphus.io.hdf5 module
- pysisyphus.io.hdf5.get_h5_group(fn, group_name, data_model=None, reset=False)[source]
Return (and create if neccesary) group with given name and data model.
17.1.1.9.5. pysisyphus.io.hessian module
- pysisyphus.io.hessian.cart_displs_to_vib_normal_modes(cart_displs, chunk_size=5)[source]
Convert Cartesian normal modes into TURBOMOLE vib_normal_modes format.
cart_displs must be a matrix of shape (3N, 3N), with Cartesian displacements in columns. One column per normal mode. The columns must be normalized.
- Return type:
str
- pysisyphus.io.hessian.geom_from_hessian(h5_fn, with_attrs=False, calculator=None, **geom_kwargs)[source]
Construct geometry from pysisyphus Hessian in HDF5 format.
- Parameters:
h5_fn (
str
) -- Filename of HDF5 Hessian.with_attrs (
bool
, default:False
) -- Whether to also return an attributes dictionary. Attributes contain charge and multiplicity, as well as atoms and the electronic energy.calculator (default:
None
) -- Calculator that is set on the Geometry object, before energy & hessian are assigned. This argument is not typed, as using 'Calculator' and the associated import leads to a circular import.
- Returns:
geom -- Geometry object with Hessian and electronic energy set.
attrs -- Dictinoary containing the attributes set in the HDF5 file. Only returned when with_attrs is True.
- pysisyphus.io.hessian.normal_modes_to_molden(atoms, coords3d, nus, cart_displs, thresh=10.0)[source]
- Return type:
str
17.1.1.9.6. pysisyphus.io.mol2 module
17.1.1.9.7. pysisyphus.io.molden module
- pysisyphus.io.molden.get_xtb_nuc_charges(atoms, as_ecp_electrons=False)[source]
Modified nuclear charges w/o core electrons.
Adapated from Multiwfn 3.8
- pysisyphus.io.molden.radial_integral(l, exponent)[source]
- Integrates
(r r**l * exp(-exponent * r**2))**2 dr from r=0 to r=oo
as described in the SI of the JANPA paper [1] (see top of page 8, second integral in the square root.
In my opinion, the integrals lacks a factor 'r'. Below, some sympy code can be found to solve this integral (including 1*r).
import sympy as sym r, z = sym.symbols("r z", positive=True) l = sym.symbols("l", integer=True, positive=True) sym.integrate((r * r**l * sym.exp(-z*r**2))**2, (r, 0, sym.oo))
The 'solved' integral on page 8 is correct again.
∞ ⌠ ⎮ 2 ⎮ 2 2⋅l -2⋅r ⋅z ⎮ r ⋅r ⋅ℯ dr = (2*z)**(-l - 1/2)*gamma(l + 3/2)/(4*z) ⌡ 0
17.1.1.9.8. pysisyphus.io.pdb module
17.1.1.9.9. pysisyphus.io.pubchem module
17.1.1.9.10. pysisyphus.io.sdf module
17.1.1.9.11. pysisyphus.io.xyz module
17.1.1.9.12. pysisyphus.io.zmat module
- class pysisyphus.io.zmat.ZLine(atom, rind, r, aind, a, dind, d)
Bases:
tuple
- a
Alias for field number 4
- aind
Alias for field number 3
- atom
Alias for field number 0
- d
Alias for field number 6
- dind
Alias for field number 5
- r
Alias for field number 2
- rind
Alias for field number 1
- pysisyphus.io.zmat.geom_from_zmat(zmat, atoms=None, coords3d=None, geom=None, start_at=None, drop_dummy=True, **geom_kwargs)[source]
Adapted from https://github.com/robashaw/geomConvert by Robert Shaw.
17.1.1.9.13. Module contents
- class pysisyphus.io.Cube(atoms, coords3d, origin, npoints, axes, vol_data, comment1='Generated by pysisyphus', comment2='')[source]
Bases:
object
-
atoms:
Tuple
-
axes:
ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]]
-
comment1:
str
= 'Generated by pysisyphus'
-
comment2:
str
= ''
-
coords3d:
ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]]
-
npoints:
ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]]
-
origin:
ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]]
-
vol_data:
ndarray
[Any
,dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]]
- property vol_element
-
atoms:
- pysisyphus.io.geom_from_cube(inp, *args, **kwargs)
- pysisyphus.io.geom_from_fchk(inp, *args, **kwargs)
- pysisyphus.io.geom_from_hessian(h5_fn, with_attrs=False, calculator=None, **geom_kwargs)[source]
Construct geometry from pysisyphus Hessian in HDF5 format.
- Parameters:
h5_fn (
str
) -- Filename of HDF5 Hessian.with_attrs (
bool
, default:False
) -- Whether to also return an attributes dictionary. Attributes contain charge and multiplicity, as well as atoms and the electronic energy.calculator (default:
None
) -- Calculator that is set on the Geometry object, before energy & hessian are assigned. This argument is not typed, as using 'Calculator' and the associated import leads to a circular import.
- Returns:
geom -- Geometry object with Hessian and electronic energy set.
attrs -- Dictinoary containing the attributes set in the HDF5 file. Only returned when with_attrs is True.
- pysisyphus.io.geom_from_zmat(zmat, atoms=None, coords3d=None, geom=None, start_at=None, drop_dummy=True, **geom_kwargs)[source]
Adapted from https://github.com/robashaw/geomConvert by Robert Shaw.
- pysisyphus.io.parse_cube(inp, *args, **kwargs)
- pysisyphus.io.parse_xyz(inp, *args, **kwargs)